
GROUP THEORY 2024 - 25, SOLUTION SHEET 5

Exercise 1. To do yourself. Ask the assistant if something is unclear.

Exercise 2. (1) Any element in a finite group is torsion, hence Tor(A) = A.

(2) No element except 0 have finite order, so its torsion group is trivial.

(3) Let [q] ∈ Q/Z be any element represented by q = a
b ∈ Q. Then

b[q] = [bq] = [a] = [0] ∈ Q/Z

since a ∈ Z. Hence every element is torsion and Tor(Q/Z) = Q/Z.

(4) Let x ∈ C× and write it in polar form x = reiθ with r > 0 and θ ∈ [0, 2π). Then

xn = rneinθ = 1 if and only if r = 1 and nθ = 0 mod 2π, i.e. x = e2πik/n for k ∈ Z.
Those are the n-roots of unity µn. Hence

Tor(Q×) = µ∞ =
⋃

n∈N>0

µn.

(5) We know that subgroups of Z are of the form nZ ∼= Z which are free, hence without
torsion.

(6) We saw in the course that subgroups of finite free abelian group are free abelian, which
shows that their torsion subgroup is trivial.

Exercise 3. Since G is finitely generated, there exists a finite set of generators for G. Let
g1, g2, . . . , gk be a set of generators for G, so that every element of G can be written as an
integer linear combination of these generators:

g = n1g1 + n2g2 + · · ·+ nkgk,

where a1, a2, . . . , ak ∈ Z.
Since Tor(G) = G, every element in G is a torsion element. This implies that for each

generator gi ∈ G, there exists a positive integer mi minimal with the property that mi · gi = 0
for i = 1, . . . , k (mi is the order of gi).

Since G is generated by the finite set {g1, g2, . . . , gk} and each gi has finite order mi, there are
only finitely many possible combinations of the generators g1, g2, . . . , gk with integer coefficients
ai modulo mi, implying that G itself is finite.
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Exercise 4. (1) =⇒ (2): For all i ∈ I, define ei ∈ Z⊕I as:

ei := (aj)j∈I ∈ Z⊕I , where aj = 1 if j = i and aj = 0 if j ̸= i.

It is straightforward to show using the definition of direct sums that the set {ei}i∈I is a basis
for Z⊕I . Now if A ∼= Z⊕I the then homomorphic image of the ei for a basis for A.

(2) =⇒ (1): Fix a basis, (ak)k∈I of A, then every element x ∈ A can be uniquely writ-
ten as:

x =
∑
k∈I

nkak

for some nk ∈ Z. Consider the following function, which is well-defined due to the aforemen-
tioned uniqueness:

φ : A→ Z⊕I ,
∑
k∈I

nkak 7→ (nk)k∈I .

It is a straightforward check to see that φ is an isomorphism of Abelian groups.

Exercise 5. (1) Suppose first that G is free abelian. The previous exercise tells us that
there exists a set I and a basis B = {ai|i ∈ I} ⊂ G such that all elements x ∈ G can be
uniquely written as finite sums

x =
∑
k∈I

nkak

where all but finitely many nk equal 0. Let A be another abelian group with a set
function f : B → A. Let us prove the existence of φ by defining

φ : G→ A

x =
∑
k∈I

nkak 7→
∑
k∈I

nkf(ak)

This is well defined since all but finitely many nk are non-zero (it is a finite sum). It
is clearly a group homomorphism (to check for yourself) and φ(i(ak)) = φ(ak) = f(ak)
for all ak ∈ B so that φ ◦ i = f . To prove unicity, suppose that there exists two
homomorphism φ,φ′ : G→ A extending f . Then for all x =

∑
k∈I nkak ∈ G we have

φ′(x) = φ′(
∑
k∈I

nkak) =
∑
k∈I

nkφ
′(ak)

=
∑
k∈I

nkf(ak)

=
∑
k∈I

nkφ(ak) = φ(
∑
k∈I

nkak) = φ(x)
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which proves that φ = φ′ (we used the fact that both φ and φ′ are linear and extend
f).

(2) Suppose now that G satisfies the universal property of free abelian groups. We will
show that G is indeed free abelian by showing that G ∼= Z⊕B for B the set given by
the universal property of G. Note that the idea of the following proof is always used
when dealing with universal properties, which you will (probably) encounter again in
the future.

Let f : B → Z⊕B given by the inclusion of the basis, i.e. f : b 7→ eb ∈ Z⊕B defined
in the proof of the previous exercise (eb is a generalization of ei ∈ kn of linear algebra).
Using the universal property of G, the map f extend to a morphism φ : G→ Z⊕B such
that the following triangle commutes

B G

Z⊕B.

i

f
φ

Since Z⊕B is free abelian with basis f : B ⊂ Z⊕B, it satisfies the universal property
(proved in the first point) of free abelian groups. Hence we can extend i : B → G along
f : B → Z⊕B to obtain φ′ : Z⊕B → G such that the following triangle commutes:

B Z⊕B

G.

f

i
φ′

We now prove that φ and φ′ are inverse of each other by applying two more times the
universal property of free abelian groups. First we apply it to G and it tells us that
there exists a unique ψ : G→ G such that the following triangle commutes:

B G

G.

i

i
ψ

Since the identity IdG : G → G does the job, any such ψ must be the identity. But for
ψ = φ′ ◦ φ we have that ψ ◦ i = φ′ ◦ φ ◦ i = φ′ ◦ f = i, where we use the commutativity
of the two first triangles. As explained, by unicity of such maps, we must have that
φ′ ◦ φ = IdG. In a similar fashion, we can use the universal property of Z⊕B to show
that φ ◦ φ′ = IdZ⊕B . This shows that G ∼= Z⊕B which ends the proof.

Exercise 6. Since F is free with basis {e1, e2, e3} we can apply the universal property of
exercise 5 with B = {e1, e2, e3}, G = F and A = Z2. It tells us that there exists a unique group
homomorphism φ : F → Z2 which extends f . The image of a group homomorphism is always
a subgroup of the codomain. Since we saw in the lectures that subgroups of finite free abelian
groups are finite free abelian, this answers positively to the question.
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Exercise 7. We will constantly use the fact that any subgroup of Zk is free of rank l ≤ k.
In each case we will denote the Abelian group in question by A.

(1) Since {(1, 1)} is a generating set of A and is linearly independent, it is a basis for A and
hence the rank of A is 1.

(2) The rank of A is 1 again since B = {(1, 2)} is a basis for A. The set B is linearly
independent and generates A as (−3,−6) = (−3)(1, 2).

(3) One checks that {1,
√
2,
√
3} forms a basis for A and hence the rank of A is 3.

(4) The rank of A is 3 since the three elements generate A and are linearly independent
which can be seen by observing that the determinant of the following matrix is non-zero:1 2 1

5 3 −9
1 8 34

 .

(5) Note that the set B = {(1, 5, 1), (2, 3, 8)} is linearly independent and generates A since
(1,−9, 13) = (−3)(1, 5, 1) + 2(2, 3, 8). Hence the rank of A is 2.

Exercise 8. Let φ : Zn → Zm be an isomorphism of abelian groups. Fix a prime number p
and consider the following subgroup of Zm:

H := {(a1, ..., am) ∈ Zm | ai ∈ pZ}.

Note that Zm/H ∼= (Z/pZ)m.

We leave it as a little exercise to the reader to show that

φ−1(H) = {(a1, ..., an) ∈ Zn | ai ∈ pZ}

and Zn/φ−1(H) ∼= (Z/pZ)n.

Since φ is in particular a surjective homomorphism, the correspondence theorem along with
the third isomorphism theorem implies that φ induces an isomorphism:

φ : Zn/φ−1(H) → Zm/H.

Hence we have an isomorphism of abelian groups:

φ : (Z/pZ)n → (Z/pZ)m.

Which automatically is Z/pZ - linear since it a morphism of abelian groups. Since isomorphic
vector spaces must have the same dimension we obtain that m = n.
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Exercise 9. The same proof as Proposition 11 of the lecture notes apply to show that Q>0 is not
finitely generated. To show that it is free, we show that the set B = {pi| pi is prime} of prime
numbers forms a basis. Let q = a

b be written in indecomposable form, with a, b ∈ N∗. Decompose
a and b as a product of powers of prime numbers. Note that the prime numbers appearing in
each decomposition are distinct since the fraction a

b has been chosen to be indecomposable.
Using those decompositions, we obtain q as a finite product of powers of elements of B (the
powers are negative for the primes appearing in the decomposition of b). If there was more than
one decomposition of q as a product of powers of primes, it would yield distinct decompositions
of either a or b (or of both) as product of powers of primes, by seperating the positive and
negative powers. By unicity of the decomposition of natural numbers (seen in linear algebra 2)
we obtin a contradiction.

We have shown that B is a basis of the abelian group Q>0, which means that it is free by
exercise 4.

Exercise 10. We refer to the diagram in the exercise sheet for notation. Suppose F is a finitely
generated free Abelian group, then fix a basis e1, e2, ..., en for F . Since ϕ is surjective we can
choose pre-images g1, ..., gn in G of ψ(e1), ..., ψ(en)(H). It follows from the universal property
of free Abelian groups that we can define a map α : A → G, making the diagram commute by
simply sending ei to gi. Hence A is projective.

Conversely suppose that A is a finitely generated Abelian group, then let a1, ..., an be any
generating set. Then we obtain a surjective group homomorphism ϕ : Zn → A which is defined
by sending the usual basis ei to ai. Let K be the kernel of the homomorphism ϕ. Now K is
a free Abelian group since we know from the lectures that subgroups of finitely generated free
Abelian groups are free. Hence we obtain a short exact sequence:

0 −→ K −→ Zn ϕ−→ A→ 0.

Let ψ : A → A be the identity map, the the projectivity of A implies that there exists a map
α : A→ Zn such that ϕ◦α = IdA. Hence the above exact sequence splits on the right. Therefore
A is a subgroup of Zn and is hence a free Abelian group.

Exercise 11. Consider the short exact sequence:

0 → 2Z → Z → Z/2Z → 0.

The induced sequence of torsion subgroups is:

0 → 0 → 0 → Z/2Z → 0.

Which is clearly not exact due to the failure of the surjectivity of the map 0 → Z/2Z.


